Resumen del Consenso Internacional sobre Resucitación Cardiopulmonar y Atención Cardiovascular de Emergencias con Recomendaciones de Tratamiento en Soporte Vital Pediátrico

Contenido principal del artículo

Ramiro Gilardino
Gustavo Sciola. et al

Resumen

Las Recomendaciones 2020 del Consenso internacional sobre  Resucitación Cardiopulmonar (RCP) y Atención Cardiovascular de Emergencia (ACE) fueron publicadas en octubre de 2020 y representan una serie de publicaciones periódicas del Comité Internacional de enlace en Resucitación o ILCOR (International Liaison Committee on Resuscitation) comúnmente llamadas “Consenso de la Ciencia(Maconochie IK, 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020 Oct 20;142(16_suppl_1):S140-S184). El Comité de Reanimación Avanzada Pediátrica de SATI ha realizado un resumen de las mismas basado en la evidencia disponible.

Detalles del artículo

Cómo citar
1.
Gilardino R, Sciola. et al G. Resumen del Consenso Internacional sobre Resucitación Cardiopulmonar y Atención Cardiovascular de Emergencias con Recomendaciones de Tratamiento en Soporte Vital Pediátrico. Rev Arg de Ter Int. [Internet]. 3 de mayo de 2021 [citado 10 de enero de 2025];38. Disponible en: https://revista.sati.org.ar/index.php/MI/article/view/778
Sección
Resúmenes de Artículos

Citas

1 Maconochie IK, Aickin R, Hazinski MF, et al. Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020; 142: S140–84.
2 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med 2009; 6: e1000100.
3 Perkins GD, Neumar R, Monsieurs KG, et al. The International Liaison Committee on Resuscitation—Review of the last 25 years and vision for the future. Resuscitation. 2017; 121: 104–16.
4 Balshem H, Helfand M, Sch€ Unemann C J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401–6.
5 Soar J, MacOnochie I, Wyckoff MH, et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary from the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; And First Aid Task Forces. Circulation 2019; 140: E826–80.
6 Soar J, Donnino MW, Maconochie I, et al. 2018 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Circulation 2018; 138: e714–30.
7 Olasveengen TM, de Caen AR, Mancini ME, et al. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Resuscitation 2017; 121: 201–14.
8 De Caen AR, Maconochie IK, Aickin R, et al. Part 6: Pediatric basic life support and pediatric advanced life support 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2015; 132: S177–203.
9 American Heart Association. Interim Guidance for Healthcare Providers during COVID-19 Outbreak. Dallas, Tx., 2020.
10 International Liaison Committee on Resuscitation. COVID-19 infection risk to rescuers from patients in cardiac arrest. Geneva, 2020.
11 De Caen AR, Berg MD, Chameides L, et al. Part 12: Pediatric advanced life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015; 132: S526–42.
12 de Caen AR, Kleinman ME, Chameides L, et al. Part 10: Paediatric basic and advanced life support: 2010 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2010; 81: e213–59.
13 Olasveengen TM, De Caen AR, Mancini ME, et al. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations Summary. Circulation 2017; 136: e424–40.
14 Sutton RM, French B, Niles DE, et al. 2010 American Heart Association recommended compression depths during pediatric in-hospital resuscitations are associated with survival. Resuscitation 2014; 85: 1179–84.
15 Sutton RM, Case E, Brown SP, et al. A quantitative analysis of out-of-hospital pediatric and adolescent resuscitation quality - A report from the ROC epistry-cardiac arrest. Resuscitation 2015; 93: 150–7.
16 Trubey R, Huang C, Lugg-Widger F V., et al. Validity and effectiveness of paediatric early warning systems and track and trigger tools for identifying and reducing clinical deterioration in hospitalised children: A systematic review. BMJ Open 2019; 9: e022105.
17 Brown SR, Garcia DM, Agulnik A. Scoping review of pediatric Early Warning Systems (PEWS) in resource-limited and humanitarian settings. Front Pediatr 2019; 6. DOI:10.3389/fped.2018.00410.
18 Chapman SM, Wray J, Oulton K, Peters MJ. Systematic review of paediatric track and trigger systems for hospitalised children. Resuscitation 2016; 109: 87–109.
19 Lambert V, Matthews A, MacDonell R, Fitzsimons J. Paediatric early warning systems for detecting and responding to clinical deterioration in children: A systematic review. BMJ Open 2017; 7: e014497.
20 Inwald DP, Canter R, Woolfall K, et al. Restricted fluid bolus volume in early septic shock: Results of the Fluids in Shock pilot trial. Arch Dis Child 2019; 104: 426–31.
21 Balamuth F, Kittick M, McBride P, et al. Pragmatic Pediatric Trial of Balanced Versus Normal Saline Fluid in Sepsis: The PRoMPT BOLUS Randomized Controlled Trial Pilot Feasibility Study. Acad Emerg Med 2019; 26: 1346–56.
22 Emrath ET, Fortenberry JD, Travers C, McCracken CE, Hebbar KB. Resuscitation with Balanced Fluids Is Associated with Improved Survival in Pediatric Severe Sepsis. Crit Care Med 2017; 45: 1177–83.
23 Kortz TB, Axelrod DM, Chisti MJ, Kache S. Clinical outcomes and mortality before and after implementation of a pediatric sepsis protocol in a limited resource setting: A retrospective cohort study in Bangladesh. PLoS One 2017; 12: e0181160.
24 Sankar J, Ismail J, Sankar MJ, Suresh CPS, Meena RS. Fluid bolus over 15-20 versus 5-10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial. Pediatr Crit Care Med 2017; 18: e435–45.
25 Li D, Li X, Cui W, Shen H, Zhu H, Xia Y. Liberal versus conservative fluid therapy in adults and children with sepsis or septic shock. Cochrane Database Syst Rev 2018; 2018. DOI:10.1002/14651858.CD010593.pub2.
26 Gelbart B, Glassford NJ, Bellomo R. Fluid bolus therapy-based resuscitation for severe sepsis in hospitalized children: A systematic review. Pediatr Crit Care Med 2015; 16: e297–307.
27 Medeiros DNM, Ferranti JF, Delgado AF, De Carvalho WB. Colloids for the initial management of severe sepsis and septic shock in pediatric patients a systematic review. Pediatr Emerg Care 2015; 31: e11–6.
28 Long E, Babl FE, Oakley E, Sheridan B, Duke T. Cardiac Index Changes with Fluid Bolus Therapy in Children with Sepsis - An Observational Study. Pediatr Crit Care Med 2018; 19: 513–8.
29 Weiss SL, Peters MJ, Alhazzani W, et al. Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med 2020; 46: 1–9.
30 van Paridon BM, Sheppard C, Guerra G GG, Joffe AR. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Crit Care 2015; 19: 293.
31 Zhang S, Dai X, Guo C. Crystalloid fluid administration was associated with outcomes in pediatric patients with severe sepsis or septic shock. Med (United States) 2018; 97: e12663.
32 Ramaswamy KN, Singhi S, Jayashree M, Bansal A, Nallasamy K. Double-Blind Randomized Clinical Trial Comparing Dopamine and Epinephrine in Pediatric Fluid-Refractory Hypotensive Septic Shock∗. Pediatr Crit Care Med 2016; 17: e502–12.
33 Ventura AMC, Shieh HH, Bousso A, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med 2015; 43: 2292–302.
34 Kanani AN, Hartshorn S. NICE clinical guideline NG39: Major trauma: Assessment and initial management. Arch Dis Child Educ Pract Ed 2017; 102: 20–3.
35 Marino BS, Tabbutt S, MacLaren G, et al. Cardiopulmonary Resuscitation in Infants and Children With Cardiac Disease: A Scientific Statement From the American Heart Association. Circulation 2018; 137: e691–782.
36 Abman SH, Hansmann G, Archer SL, et al. Pediatric pulmonary hypertension. Circulation 2015; 132: 2037–99.
37 Avila-Alvarez A, Jesus del Cerro Marin M, Bautista-Hernandez V. Pulmonary Vasodilators in the Management of Low Cardiac Output Syndrome After Pediatric Cardiac Surgery. Curr Vasc Pharmacol 2015; 14: 37–47.
38 Miller O, Tang SF, Keech A, Pigott NB, Beller E, Celermajer DS. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: A randomised double-blind study. Lancet 2000; 356: 1464–9.
39 Kleinman ME, Chameides L, Schexnayder SM, et al. Part 14: Pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122: S876–908.
40 Khera R, Tang Y, Girotra S, et al. Pulselessness after Initiation of Cardiopulmonary Resuscitation for Bradycardia in Hospitalized Children: Prevalence, Predictors of Survival, and Implications for Hospital Profiling. Circulation 2019; 140: 370–8.
41 Donoghue A, Berg RA, Hazinski MF, Praestgaard AH, Roberts K, Nadkarni VM. Cardiopulmonary resuscitation for bradycardia with poor perfusion versus pulseless cardiac arrest. Pediatrics 2009; 124: 1541–8.
42 Holmberg MJ, Geri G, Wiberg S, et al. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: A systematic review. Resuscitation 2018; 131: 91–100.
43 Maconochie IK, Bingham R, Eich C, et al. European Resuscitation Council Guidelines for Resuscitation 2015. Section 6. Paediatric life support. Resuscitation 2015; 95: 223–48.
44 De Caen AR, Berg MD, Chameides L, et al. Part 12: Pediatric advanced life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015; 132: S526–42.
45 Mercier E, Laroche E, Beck B, et al. Defibrillation energy dose during pediatric cardiac arrest: Systematic review of human and animal model studies. Resuscitation 2019; 139: 241–52.
46 Matsui S, Kitamura T, Sado J, et al. Location of arrest and survival from out-of-hospital cardiac arrest among children in the public-access defibrillation era in Japan. Resuscitation 2019; 140: 150–8.
47 Fukuda T, Kondo Y, Hayashida K, Sekiguchi H, Kukita I. Time to epinephrine and survival after paediatric out-of-hospital cardiac arrest. Eur Hear J - Cardiovasc Pharmacother 2018; 4: 144–51.
48 Hellevuo H, Sainio M, Nevalainen R, et al. Deeper chest compression - More complications for cardiac arrest patients? Resuscitation 2013; 84: 760–5.
49 Nadkarni VM, Larkin GL, Peberdy MA, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. J Am Med Assoc 2006; 295: 50–7.
50 Samson RA, Nadkarni VM, Meaney PA, Carey SM, Berg MD, Berg RA. Outcomes of In-Hospital Ventricular Fibrillation in Children. N Engl J Med 2006; 354: 2328–39.
51 Lavonas EJ, Ohshimo S, Nation K, et al. Advanced airway interventions for paediatric cardiac arrest: A systematic review and meta-analysis. Resuscitation 2019; 138: 114–28.
52 Wolfe HA, Sutton RM, Reeder RW, et al. Functional outcomes among survivors of pediatric in-hospital cardiac arrest are associated with baseline neurologic and functional status, but not with diastolic blood pressure during CPR. Resuscitation 2019; 143: 57–65.
53 Berg RA, Sutton RM, Reeder RW, et al. Association between diastolic blood pressure during pediatric in-hospital cardiopulmonary resuscitation and survival. Circulation 2018; 137: 1784–95.
54 Cournoyer A, Iseppon M, Chauny JM, Denault A, Cossette S, Notebaert É. Near-infrared Spectroscopy Monitoring During Cardiac Arrest: A Systematic Review and Meta-analysis. Acad Emerg Med 2016; 23: 851–62.
55 Schnaubelt S, Sulzgruber P, Menger J, Skhirtladze-Dworschak K, Sterz F, Dworschak M. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome – A review of the current literature. Resuscitation 2018; 125: 39–47.
56 Andersen LW, Berg KM, Saindon BZ, et al. Time to epinephrine and survival after pediatric in-hospital cardiac arrest. JAMA - J Am Med Assoc 2015; 314: 802–10.
57 Lin YR, Wu MH, Chen TY, et al. Time to epinephrine treatment is associated with the risk of mortality in children who achieve sustained ROSC after traumatic out-of-hospital cardiac arrest. Crit Care 2019; 23: 101.
58 Lin YR, Li CJ, Huang CC, et al. Early epinephrine improves the stabilization of initial post-resuscitation hemodynamics in children with non-shockable out-of-hospital cardiac arrest. Front Pediatr 2019; 7. DOI:10.3389/fped.2019.00220.
59 Hansen M, Schmicker RH, Newgard CD, et al. Time to epinephrine administration and survival from nonshockable out-of-hospital cardiac arrest among children and adults. Circulation 2018; 137: 2032–40.
60 Buick JE, Wallner C, Aickin R, et al. Paediatric targeted temperature management post cardiac arrest: A systematic review and meta-analysis. Resuscitation 2019; 139: 65–75.
61 Holmberg MJ, Nicholson T, Nolan JP, et al. Oxygenation and ventilation targets after cardiac arrest: A systematic review and meta-analysis. Resuscitation 2020; 152: 107–15