Usefulness of troponins for the management of critical patient with non-cardiac disease in the Intensive Care Unit. Narrative Review

Main Article Content

Pablo Ezequiel Sarmiento
Julio Bono
Raul Barcudi

Abstract

Cardiac troponins I and T are components of the myocyte contractile apparatus and are expressed almost exclusively in the heart. Even though high troponine values mean myocardial damage, the pathophysiological mechanisms involved are unclear. Troponin elevation is synonym of myocardial injury and it may be secondary to: 1) coronary artery atherosclerosis leading to type 1 myocardial infarction; 2) an imbalance of oxygen supply and demand leading to a type 2 myocardial infarction; and 3) a myocardial injury in the clinical context of cardiac and non-cardiac diseases. Chronic kidney disease, brain injury, sepsis and lung injury are frequent non-cardiac pathologies that occur with myocardial injury. The objective of this narrative review is to present and order the available evidence about the behavior and utility of cardiac troponins in different prevalent clinical entities in the intensive care unit.

Article Details

How to Cite
1.
Sarmiento PE, Bono J, Barcudi R. Usefulness of troponins for the management of critical patient with non-cardiac disease in the Intensive Care Unit.: Narrative Review. Rev Arg de Ter Int. [Internet]. 2020 Nov. 10 [cited 2024 Dec. 21];37(3). Available from: https://revista.sati.org.ar/index.php/MI/article/view/717
Section
Reviews

References

1. Thygesen K, Mair J, Giannitsis E, Mueller et al. Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J
2012;33:2252–2257.
2. Thygesen K, Alpert JS, Jaffe AS et al. Fourth universal definition ofmyocardial infarction (2018) European Heart Journal (2019) 40, 237–269 doi:10.1093/eurheartj/ehy462
3. Rittoo D, Jones A, Lecky B, Neithercut D. Elevation of cardiac troponin T, but not cardiac troponin I, in patients with neuromuscular diseases: Implications for the diagnosis of myocardial infarction. J Am Coll Cardiol 2014;63:2411– 2420.
4. Jaffe AS, Vasile VC, Milone M, et al. Diseased skeletal muscle: A noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 2011;58:1819–1824.
5. Wens SCA, Schaaf GJ, Michels M, Kruijshaar ME, et al. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in Pompe disease. Circ Cardiovasc Genet 2016;9:6–13.
6. Mair J, Lindahl B, Mu¨ller C, Giannitsis E, et al. What to do when you question cardiac troponin values. Eur Heart J Acute Cardiovasc Care; doi: 10.1177/2048872617708973. Published online ahead of print 1 May 2017.
7. Mair J, Lindahl B, Hammarsten O, et al; European Society of Cardiology (ESC) Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association (ACCA). How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care; doi: 10.1177/2048872617748553.
8. Vestergaard KR, Jespersen CB, Arnadottir A, et al; Prevalence and significance of troponin elevations in patients without acute coronary disease. Int J Cardiol 2016;222:819–825.
9. Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated cardiac troponin T in skeletal myopathies.J Am Cardiol Coll 2018;71:1540–1549.
10. Reichlin T, Hochholzer W, Bassetti S, Steuer S, et al. al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med. 2009;361(9):858-67.
11. Twerenbold R, Jaffe A, Reichlin T, et al. High-sensitive troponin T measurements: what do we gain and what are
the challenges? Eur Heart J. 2012;33(5):579-86.
12. White HD. Pathobiology of troponin elevations: Do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 2011;57:2406–2408.
13. Jaffe AS, Wu AH. Troponin release—reversible or irreversible injury? Should we care? Clin Chem 2012;58:148–150.
14. Eggers KM, Jernberg T, Lindahl B, Cardiac Troponin Elevation in Patients Without a Specific Diagnosis.
15. James L. Januzzi, and Cian P. McCarthy. Trivializing an Elevated Troponin Adding Insult to Injury? J Am Coll Cardiolgy 2019;73:10-12.
16. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351: 1296–1305.
17. Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004; 351:1285–1295.
18. Marenzi G, Cabiati A, Assanelli E. Chronic kidney disease in acute coronary syndromes. World J Nephrol. 2012;1(5):134–145.
19. Freda BJ, Tang WH, Van Lente F et al. Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol. 2002; 40: 2065–2071.
20. Kumar N, Michelis MF, DeVita MV, et al. Troponin I levels in asymptomatic patients on haemodialysis using a high-sensitivity assay. Nephrol Dial Transplant. 2011;26(2):665–70.
21. Amsterdam EZ, Wenger NK, Peterson ED, et al. 2014 AHA/ACC guideline for the management of patients with non-ST elevation acute coronary syndromes. J Am Coll Cardiol. 2014;64:e139-228.
22. Bjurman C, Larsson M, Johanson P, et al. Small changes in troponin T levels are common in patients with non-ST-segment elevation myocardial infarction and are linked to higher mortality. J Am Coll Cardiol. 2013 Oct 1; 62(14):1231-1238.
23. Haller C, Stevanovich A, Katus HA. Are cardiac troponins reliable sero diagnostic markers of cardiac ischaemia in end-stage renal disease? Nephrol Dial Transplant. 1996 Jun;11(6):941-4.
24. Adams JE 3rd, Bodor GS, Dávila-Román VG, et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation. 1993 Jul;88(1):101-6.
25. Hafner G, Thome-Kromer B, Schaube J, et al. Cardiac troponins in serum in chronic renal failure. Clin Chem. 1994 Sep;40(9):1790-1.
26. Moreno J, Lepori A, Bono J et al.[High sensitivity T troponin and CA-125 as prognostic biomarkers in patients with end stage renal disease in hemodialysis]. Rev Fac Cien Med Univ Nac Cordoba. 2016;73(1):8-14. 27.11.
27. Miller-Hodges E, Anand A, Shah ASV, et al. High-Sensitivity Cardiac Troponin and the Risk
28. Stratification of Patients With Renal Impairment Presenting With Suspected Acute Coronary Syndrome. Circulation. 2018 Jan 30;137(5):425-435. 28.12. TwerenboldR, Badertscher P, Boeddinghaus J, et al. 0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation. 2018 Jan 30;137(5):436-451.
29. deFilippi C, Wasserman S, Rosanio S, et al. Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing longterm hemodialysis. JAMA. 2003; 290(3):353–9.
30. Hayashi T, Obi Y, Kimura T, et al. Cardiac troponin T predicts occult coronary artery stenosis in patients with chronic kidney disease at the start of renal replacement therapy. Nephrol Dial Transplant. 2008;23(9): 2936–42.
31. Charytan D, Kuntz RE, Mauri L, DeFilippi C. Distribution of coronary artery disease and relation to mortality in asymptomatic hemodialysis patients. Am J Kidney Dis.2007;49(3):409–16.
32. Chonchol M, Whittle J, Desbien A, et al. Chronic kidney disease is associated with angiographic coronary artery disease. Am J Nephrol. 2008;28(2):354–60.
33. Michos ED, Wilson LM, Yeh HC, et al. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med. 2014;161 :491-501.
34. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005;142: 786 –91.
35. Wang AY, Lai KN. Use of cardiac biomarkers in end-stage renal disease. J Am Soc Nephrol. 2008;19:1643–52
36. Long B, Belcher CN, Koyfman A, Bronner JM, Interpreting Troponin in Renal Disease: A Narrative Review for Emergency Clinicians American Journal of Emergency Medicine (2019), doi:https://doi.org/10.1016/j.ajem.2019.11.041
37. Kanderian AS, Francis GS. Cardiac troponins and chronic kidney disease. Kidney Int.2006;69: 1112–4.38.11d. Chen M, Gerson H, Eintracht S et al. Effect of Hemodialysis on Levels of High-Sensitivity Cardiac
38. Troponin T. Am J Cardiol. 2017 Dec 1;120(11):2061-2064. doi: 10.1016/j.amjcard.2017.08.026. Epub 2017 Sep4.
39. Chesnaye N, Szummer K, MD, Barany P et al. Association Between Renal Function and Troponin T Over Time in Stable Chronic Kidney Disease Patients. J Am Heart Assoc. 2019;8:e013091. DOI:10.1161/JAHA.119.013091.
40. Tanawat Tarapana, Khrongwong Musikatavorna, Piyarat Phairatwet et al. High sensitivity TroponinI levels in asymptomatic hemodialysis patients. RENAL FAILURE 2019, VOL. 41, NO. 1, 393–400.https://doi.org/10.1080/0886022X.2019.1603110.
41. Sun L, Ji Y, Wang Y et al. High-sensitive cardiac troponin T: a biomarker of left-ventricular diastolic dysfunction in hemodialysis patients. . J Nephrol. 2018 Dec;31(6):967-973. doi: 10.1007/s40620-018-0540-0.
42. J Bono, J Moreno, P Novoa, R Guglielmone, R D´Elías, O Kiener and E Moreyra. Does Ultrasensitive Troponin have prognostic value in patients with Chronic Kidney Disease on haemodialysis? Eur. Heart J (2013)34(Suppl 1).
43. Keller T, Wanner C, Krane V et al. Conventional Cardiac Troponin T Assays Among Patients With Type 2 Diabetes Mellitus Undergoing Maintenance Hemodialysis. Am J Kidney Dis. 71(6):822-830.
44. McGill D, Talaulikar G, Potter JM, et al. Over time, high sensitivity TnT replaces NTproBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure. Clin Chim Acta. 2010;411(13–14):936–9.
45. Wolley M, Stewart R, Curry E, et al. Variation in and prognostic importance of troponin T measured using a high-sensitivity assay in clinically stable haemodialysis patients. Clin Kidney J. 2012;6(4):402–9.
46. Hassan HC, Howlin K, Jefferys A, et al. High-sensitivity troponin as a predictor of cardiac events and mortality in the stable dialysis population. Clin Chem. 2014;60(2):389–98.
47. McCullough PA, Nowak RM, Foreback C, et al. Performance of multiple cardiac biomarkers measured in the emergency department in patients with chronic kidney disease and chest pain. Acad Emerg Med. 2002 Dec;9(12):1389-96.
48. Kraus, D, von Jeinsen B, Tzikas S, et al Cardiac Troponins for the Diagnosis of Acute Myocardial Infarction in Chronic Kidney Disease, J Am Heart Assoc. 2018;7:e008032. DOI:10.1161/JAHA.117.008032.
49. Eunsoo Lim, Min-Jeong Lee, MDb, et al. Optimal cut-off value of high-sensitivity troponin I in diagnosing myocardial infarction in patients with end-stage renal disease. Medicine 2020;99:5(e18580)
50. El-Menyar A, Sthian B, et al .Serum cardiac troponin as prognostic markers in patients with traumatic and non-traumatic brain injuries: A meta –analysis. Am J Emerg. Med 2019; 37: 133-142.
51. Kolominsky-Rabas PL, Weber M, Gefeller O, et al. Epidemiology of ischemic stroke subtype according to TOAST criteria incidence, recurrence, and long-term survival in ischemic stroke subtypes: a populationbased study. Stroke 2001;32:2735-2740
52. Hart RG, Catanese L, Perera KS, et al. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke 2017;48:867-872.
53. Scheitz, JF; Nolte C; Laufs U et al., Application and Interpretation of High-Sensitivity Cardiac Troponin Assays in Patients With Acute Ischemic Stroke. Stroke. 2015;46:00-00. DOI:10.1161/STROKE AHA. 114.007858.)
54. Cannon WB. “Voodoo” death. American Anthropologist. 1942;44(new series):169–181. Am J Public Health. 2002;92:1593–1596.
55. Samuels MA. ‘Voodoo’ death revisited: the modern lessons of neurocardiology.Cleve Clin J Med. 2007;74(suppl 1):S8–S16
56. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 2008;118:2754–2762. doi: 10.1161/CIRCULATIONAHA.108.767012.
57. Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–548. doi:10.1056/NEJMoa043046
58. Barber M, Morton JJ, Macfarlane PW, et al Elevated troponin levels are associated with sympathoadrenal activation in acute ischaemic stroke. Cerebrovasc Dis. 2007;23:260–266. doi: 10.1159/000098325 m 10.46.
59. Yoshimura S, Toyoda K, Ohara T, et al. Takotsubo cardiomyopathy in acute ischemic stroke. Ann Neurol. 2008;64:547–554. doi: 10.1002/ana.21459
60. Scheitz JF, Mochmann HC, Witzenbichler B, et al. Takotsubo cardiomyopathy following ischemic stroke: a cause of troponin elevation. J Neurol. 2012;259:188–190. doi: 10.1007/s00415-011-6139-1.
61. Hijazi Z, Oldgren J, Andersson U, et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients withatrial fibrillation: a randomized evaluation of long-term anticoagulation therapy (RE-LY) substudy. Circulation 2012;125:1605-1616.
62. Eggers KM, Lind L, Ahlstr€om H, et al. Prevalence and pathophysiological mechanisms of elevated cardiac troponin I levels in a population-based sample of elderly subjects. Eur Heart J 2008;29:2252-2258.
63. Beaulieu-Boire I, Leblanc N, Berger L, et al. Troponin elevation predicts atrial fibrillation in patients with stroke or transient ischemic attack. J Stroke Cerebrovasc Dis 2013;22:978-983.
64. Wallace TW, Abdullah SM, Drazner MH, et al. Prevalence and determinants of troponin T elevation in the general population. Circulation 2006;113:1958-1965
65. Scheitz JF, Mochmann HC, Erdur H, et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol 2014;177:886-893.
66. Song HS, Back JH, Jin DK, et al. Cardiac troponin T elevation after stroke: relationships between elevated serum troponin T, stroke location, and prognosis. J Clin Neurol 2008;4:75-83.
67. Kerr G, Ray G, Wu O, et al. Elevated troponin after stroke: a systematic review. Cerebrovasc Dis 2009;28:220-226.
68. Terce~no M, Silva Y, Bashir S, et al. Troponin T Predicts Cardioembolic Aetiology and ClinicalOutcome in Undetermined Ischaemic Stroke in Hyperacute Journal of Stroke and Cerebrovascular Diseases, Vol.(00), No.(00), 2019: 104528. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104528
69. Yaghi S, Chang AD, Ricci BA, et al. Early elevated troponin levels after ischemic stroke suggests a cardioembolic source. Stroke 2018;49:121-126.
70. Burch GE, Meyers R, Abildskov JA. A new electrocardiographic pattern observed in cerebrovascular accidents. Circulation.1954;9:719–23.
71. Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke J Cereb Circ.2004;35:548–51.
72. Kono T, Morita H, Kuroiwa T, et al. A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium.J Am Coll Cardiol. 1994;24:636–40.
73. Mayer SA, LiMandri G, Sherman D, et al. Electrocardiographic markers of abnormal left ventricular wall motion in acute subarachnoid hemorrhage. J Neurosurg. 1995;83:889–96.
74. Lee VH, Connolly HM, Fulgham JR, et al. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an under appreciated ventricular dysfunction. J Neurosurg. 2006;105:264–70.
75. Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105:15–20.
76. Lee VH, Oh JK, Mulvagh SL, Wijdicks EFM. Mechanisms in neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2006;5:243–9.
77. Redfors B, Shao Y, Ali A, Omerovic E. Are the different patterns of stress-induced (Takotsubo) cardiomyopathy explained by regional mechanical overload and demand: supply mismatch in selected ventricular regions? Med Hypotheses. 2013;81:954–60.
78. Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr. 2000;13:774–9
79. Sugimoto K, Watanabe E, Yamada A, et al. Prognostic implications of left ventricular wall motion abnormalities associated with subarachnoid hemorrhage. Int Heart J. 2008;49:75–85.
80. Temes RE, Badjatia N, Connolly ES, et al. Left ventricular dysfunction and cerebral infarction from vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2010;13:359–65.
81. van der Bilt I, Hasan D, van den Brink R, et al. Cardiac dysfunction after aneurysmal subarachnoid hemorrhage: relationship with outcome. Neurology. 2014;82:351–8.
82. J. Oras • C. Grivans • K. Dalla et al. High-Sensitive Troponin T and N-Terminal Pro B-Type Natriuretic Peptide for Early Detection of Stress-Induced Cardiomyopathy in Patients with Subarachnoid Hemorrhage. Neurocrit Care DOI 10.1007/s12028-015-0108-y
83. Menyar A et al. Implications of elevated troponinin patients presenting with acute pulmonary embolismo: an observational study. Journal thorac. Dis. 2019, 11(8): 3302-3314.
84. Kostrubiec M, Jankowski K, Pedowska-Włoszek J, et al. Signs of myocardial ischemia on electrocardiogram correlate with elevated plasma cardiac troponin and right ventricular systolic dysfunction in acute pulmonary embolism. Cardiol J 2010;17(02):157–162
85. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 2010;6:691–699
86. Morrone D,Morrone V. Acute pulmonary embolism: focus on the clinical picture. Korean Circ J 2018;48(05):365–381
87. Harjola VP, Mebazaa A, Čelutkienė J, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 2016;18(03):226–241
88. Barco S, Mahmoudpour SH, Planquette B, Sanchez O, Konstantinides SV, Meyer G. Prognostic value of right ventricular dysfunction or elevated cardiac biomarkers in patients with low-risk pulmonary embolism: a systematic review and meta-analysis. Eur Heart J 2019;40(11):902–910
89. Windecker S, Stortecky S, Meier B. Paradoxical embolism. JAm Coll Cardiol 2014;64(04):403–415
90. Costabel JP, Urdapilleta M, Lambardi F, et al. High-sensitivity cardiac troponin levels in supraventricular tachyarrhythmias. Pacing Clin Electrophysiol 2016;39(06):588–591
91. Lippi G, Favaloro EJ, Kavsak P, Measurement of High-Sensitivity Cardiac Troponin in Pulmonary Embolism: Useful Test or a Clinical Distraction. Issue Theme Recent Advances in Thrombosis and Hemostasis—Part V. DOI https://doi.org/10.1055/s-0039-1698762.ISSN 0094-6176
92. Lankeit M, Friesen D, et al. Highly sensitive troponin assay in normotensive patients with acute pulmonary embolism. Eur. Heart Journal.31 (15) 1836-1844.
93. Lankeit M, Jimenez D, et al. Predictive value of the high –sensitivity troponine T assay an the simplified pulmonary embolism severity index in hemodynamically stable patients with acute pulmonaryembolism : a prospective validation study. Circulation 2011: 124 (24) :2716-2724.
94. Hogg K, et al. Does high-sensitivity troponin measurement aid in the diagnosis of pulmonary embolism?. J.Thromb. Haemost. 2011; 9 (02) 410-412.
95. Kaeberich et al, Age-adjusted high sensitivity troponin T cuttof.value for risk stratification of pulmonary embolism. Eur.Respir.J. 2015; 45 (05) 1323-1331.
96. Faller et al, Predictors and causes of long term mortality in elderly patients with acute venous thomboembolism: a prospective cohot study. Am.J. Med. 2017; 130(02) 198-206.
97. Barco S, Mhmoudpour SH, et al Prognostic value of rigth ventricular dysfunction or elevated cardiac biomarkers in patients with low-risk pulmonary embolism: a systematic review and meta-analysis. Eur.Heart J. 2019; 13: 902-910.
98. El-Menyar A, Brijesh S, et al. Elevated serum cariac troponin and mortality in acute pulmonary embolism : Sistematic review an meta- analysis. Respiratory Medicine. 2019 157 : 26-35.
99. Wachki B, Alter P, Zeller T, et al. High-sensitivity troponin I and all cause mortality in patient with stable COPD : An analysis of the “COSYCONET” study. Eur. Res. Journal 2020 – 55 : 190/314. DOI: 1183/13993003.01314-2019.
100. Pavasini R, D´Ascenzo F, et al. Cardiac troponin elevation predicts all-cause mortality in patients with acute exacerbation of chronic obstructive pulmonary disease : Systematic review and –meta-analysis. Inter. J. Cardiology 2015 (191) 187-193.
101. Agewall S, Giannitsis E, Jernberg T, et al. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011;32(4):404-11.
102. Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction Crit Care Med 2007; 35:1599–1608
103. Antonucci E, Fiaccadori E, Donadello K, et al: Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care 2014; 29:500–511
104. van Bockel EA, Tulleken JE, Ligtenberg JJ, Zijlstra JG. Troponin in septic and critically ill patients. Chest. 2005;127(2):687-8; author reply 688.
105. Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res.2004;95(12):1140-53
106. Wu AH. Increased troponin in patients with sepsis and septic shock:myocardial necrosis or reversible myocardial depression? Intensive Care Med. 2001;27(6):959-61.
107. Ammann P, Maggiorini M, Bertel O, et al. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol. 2003;41(11):2004-9.
108. Ammann P, Fehr T, Minder EI, et al Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001;27(6):965-9
109. Chagnon F, Bentourkia M, Lecomte R, et al. Endotoxin induced heart dysfunction in rats: assessment of myocardial perfusión and permeability and the role of fluid resuscitation. Crit Care Med. 2006;34(1):127-33.
110. Levy RJ, Piel DA, Acton PD, Zhou R, et al. Evidence of myocardial hibernation in the septic heart. Crit Care Med. 2005;33(12):2752-6.
111. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005;142(9):786-91.
112. Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med. 1999;27(9):1775-80.
113. Wen-LinSu, Hao-AiShui, Chou-ChinLan et al, Cardiovascular Parameters Associated With Troponin I as Indicators for 14-Day Mortality in Patients With Septic Shock. Am JMedSci2018;356(3):244-253.
114. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation. 1987;75(3):533-41.
115. Bessière F, Khenifer S, Dubourg J, et al. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013;39(7):1181-9.
116. Røsjø H, Varpula M, Hagve TA, et al. FINNSEPSIS Study Group. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med. 2011;37(1):77-85
117. Masson S; Caironi P, Fanizza C et al. Sequential N-Terminal Pro-B-Type Natriuretic Peptide and HighSensitivity Cardiac Troponin Measurements During Albumin Replacement in Patients With Severe Sepsis or Septic Shock. (Crit Care Med 2016; 44:707–716)18.2.Peder Andersson and Attila Frigyesi. High-sensitivity troponin T is an important independent predictor in addition to the Simplified Acute Physiology Score for short-term ICU mortality, particularly in patients with sepsis. Journal of Critical Care 53 (2019) 218–222 1.
118. Frencken JF, Donker DF, Spitoni C et al. Myocardial Injury in Patients With Sepsis and Its Association With Long-Term Outcome. Circ Cardiovasc Qual Outcomes. 2018;11:e004040. DOI: 10.1161/CIRCOUTCOMES.117.004040
119. Shaobo Shi; Mu Qin; Bo Shen; et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China JAMA Cardiol. doi:10.1001/jamacardio.2020.
120. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) China, 2020. CCDC Weekly / Vol. 2 / No. 8 Characteristics of and Important Lessons From the China
121. ZunyouWu and Jennifer M. McGoogan. VIEWPOINT. Coronavirus Disease 2019 (COVID-19) Outbreak in China Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA CARDIOLOGY April 7, 2020 Volume 323, Number 13:1239-1242
122. Chapman A; Bularga A, Mills NL. High-Sensitivity Cardiac Troponin Can Be An Ally in the Fight Against COVID-19. 0950 10.1161/CIRCULATIONAHA.120.047008
123. G. Lippi, C.J. Lavie and F. Sanchis-Gomar, Cardiac troponin in COVID-2019, Progress in Cardiovascular Diseases (2020), https://doi.org/10.1016/j.pcad.2020.03.001
124. Mehra M, Ruschitzka F, COVID-19 Illness and Heart Failure: A Missing Link? JACC: Heart Failure DOI: https://doi.org/10.1016/j.jchf.2020.03.004
125. Fried J; Ramasubbu K; Bhatt R et al. The Variety of Cardiovascular Presentations of COVID-19. 10.1161/CIRCULATIONAHA.120.0471641
126. Madjid M; Safavi-Naeini P; Solomon SD; Potential Effects of Coronaviruses on the Cardiovascular System A Review JAMA Cardiol. doi:10.1001/jamacardio.2020.1286. Published online March 27, 2020.;
127. Riccardo M. Inciardi R, Lupi L; et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. doi:10.1001/ jamacardio .2020.1096 Published online March 27, 2020.

Most read articles by the same author(s)