Implementación de la ventilación mecánica protectora en pacientes con síndrome de distrés respiratorio agudo
PDF
HTML

Palabras clave

síndrome de distrés respiratorio agudo
ventilación mecánica
volumen corriente
frecuencia respiratoria
fracción inspirada de oxígeno
presión positiva de fin de espiración
monitoreo respiratorio
sincronía paciente-ventilador
´desconexión del ventilador

Categorías

Cómo citar

1.
Dotta ME, Botto M, Carballo JM, Gimenez ML, Tiribelli N. Implementación de la ventilación mecánica protectora en pacientes con síndrome de distrés respiratorio agudo: Revisión narrativa. Rev Arg de Ter Int. [Internet]. 18 de octubre de 2023 [citado 28 de abril de 2024];40(octubre). Disponible en: https://revista.sati.org.ar/index.php/MI/article/view/885

Resumen

La ventilación mecánica protectora ha demostrado reducir la mortalidad en los pacientes con síndrome de distrés respiratorio agudo. Sin embargo, muchos pacientes no reciben el tratamiento ni el monitoreo ventilatorio adecuado.

La implementación de la ventilación mecánica se puede mejorar aplicando conceptos y herramientas descriptas en los protocolos publicados. La preparación del ventilador, del circuito respiratorio y de las interfaces permite corregir el volumen compresible, acondicionar el gas inspirado, y minimizar el espacio muerto instrumental.

La elección del modo ventilatorio, del volumen corriente y de la frecuencia respiratoria iniciales permiten asegurar una correcta ventilación minuto. La presión positiva de fin de espiración y la fracción inspirada de oxígeno son las variables más relevantes para mantener una adecuada oxigenación. El monitoreo de la mecánica respiratoria, del intercambio gaseoso y de la sincronía paciente-ventilador permite evaluar la respuesta a intervenciones terapéuticas, detectar complicaciones, y efectuar correcciones.

La detección del momento oportuno para iniciar la transición desde la ventilación controlada hacia la fase de soporte ventilatorio parcial y el inicio de la desconexión es un desafío importante para disminuir los riesgos asociados con la duración prolongada de la ventilación mecánica.

PDF
HTML

Citas

Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2(7511):319-23.

Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110(5):556-65.

Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159-64.

Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132(4):880-4.

Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149(5):1327-34.

Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282(1):54-61.

Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8.

Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281-6.

Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-55.

Tonetti T, Vasques F, Rapetti F, Maiolo G, Collino F, Romitti F, et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med. 2017;5(14):286.

Gattinoni L, Carlesso E, Cressoni M. Selecting the 'right' positive end-expiratory pressure level. Curr Opin Crit Care. 2015;21(1):50-7.

Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188(2):220-30.

Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315(8):788-800.

Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818-24.

ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.

AARC clinical practice guideline. Patient-ventilator system checks. American Association for Respiratory Care. Respir Care. 1992;37(8):882-6.

Branson RD. Monitoring ventilator function. Crit Care Clin. 1995;11(1):127-43.

Kallet RH, Corral W, Silverman HJ, Luce JM. Implementation of a low tidal volume ventilation protocol for patients with acute lung injury or acute respiratory distress syndrome. Respir Care. 2001;46(10):1024-37.

Operator’s Manual Addendum: Software Enhancements. [Internet]. [Consultado 20 Oct 2022]. Disponible en: https://www.medtronic.com/content/dam/covidien/library/us/en/product/acute-care-ventilation/PB840_Technical_Reference_Manual_EN_10067720D00.pdf

Plotnikow GA, Accoce M, Navarro E, Tiribelli N. Humidification and heating of inhaled gas in patients with artificial airway. A narrative review. Rev Bras Ter Intensiva. 2018;30(1):86-97.

Hinkson CR, Benson MS, Stephens LM, Deem S. The effects of apparatus dead space on P(aCO2) in patients receiving lung-protective ventilation. Respir Care. 2006;51(10):1140-4.

Prin S, Chergui K, Augarde R, Page B, Jardin F, Vieillard-Baron A. Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDS. Intensive Care Med. 2002;28(12):1756-60.

Prat G, Renault A, Tonnelier JM, Goetghebeur D, Oger E, Boles JM, L'Her E. Influence of the humidification device during acute respiratory distress syndrome. Intensive Care Med. 2003;29(12):2211-2215.

Branson RD. Humidification of respired gases during mechanical ventilation: mechanical considerations. Respir Care Clin N Am. 2006;12(2):253-61.

Thiessen RJ. The impact of severe acute respiratory syndrome on the use of and requirements for filters in Canada. Respir Care Clin N Am. 2006;12(2):287-306.

Fredes S, Gogniat E, Plotnikow G, Rodrigues La Moglie R. Utilización de filtros bacterianos/virales durante ventilación mecánica invasiva. Use of bacterial/viral filters during invasive mechanical ventilation. Rev Arg de Ter Int. [Internet]. 20 de mayo de 2013 [citado 24 de septiembre de 2021];30(1). Disponible en: //revista.sati.org.ar/index.php/MI/article/view/340

American Association for Respiratory Care. AARC Clinical Practice Guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. Respir Care. 2010;55(6):758-64.

Maggiore SM, Lellouche F, Pigeot J, Taille S, Deye N, Durrmeyer X, Richard JC, et al. Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med. 2003;167(9):1215-24.

Nasa P, Azoulay E, Khanna AK, Jain R, Gupta S, Javeri Y, et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Crit Care. 2021;25(1):106.

Imbriaco G, Monesi A. Closed tracheal suctioning systems in the era of COVID-19: is it time to consider them as a gold standard? J Infect Prev. 2021;22(1):44-45.

Caramez MP, Schettino G, Suchodolski K, Nishida T, Harris RS, Malhotra A, Kacmarek RM. The impact of endotracheal suctioning on gas exchange and hemodynamics during lung-protective ventilation in acute respiratory distress syndrome. Respir Care. 2006;51(5):497-502.

Lellouche F, Delorme M, Brochard L. Impact of Respiratory Rate and Dead Space in the Current Era of Lung Protective Mechanical Ventilation. Chest. 2020;158(1):45-47.

Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327-36.

Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al.; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-55.

Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, Guimarães HP, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017;318(14):1335-1345.

Constantin JM, Jabaudon M, Lefrant JY, Jaber S, Quenot JP, Langeron O, et al.; AZUREA Network. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7(10):870-880.

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347-54.

Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al.; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637-45.

Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al.; Open Lung Approach Network. Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med. 2016;44(1):32-42.

Hodgson CL, Cooper DJ, Arabi Y, King V, Bersten A, Bihari S, et al. Maximal Recruitment Open Lung Ventilation in Acute Respiratory Distress Syndrome (PHARLAP). A Phase II, Multicenter Randomized Controlled Clinical Trial. Am J Respir Crit Care Med. 2019;200(11):1363-1372.

Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, et al.; EPVent-2 Study Group. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2019;321(9):846-857.

Koh SO. Mode of mechanical ventilation: volume controlled mode. Crit Care Clin. 2007 Apr;23(2):161-7, viii.

Mancebo J. Assist-control ventilation. En: Tobin MJ, editor. Principles and practice of mechanical ventilation. 3 ed. Estados Unidos: Mc Graw Hill Medical; 2013. p. 159-174.

Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care. 2005;50(12):1623-31.

Sosio S, Bellani G. Plateau pressure during pressure control ventilation. AboutOpen. 2019; 5(1): 76-77.

Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al.; PLUG Working Group (Acute Respiratory Failure Section of the European Society of Intensive Care Medicine). The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520-31.

Branson RD, Johannigman JA. The role of ventilator graphics when setting dual-control modes. Respir Care. 2005;50(2):187-201.

Sasidhar M, Chatburn RL. Tidal volume variability during airway pressure release ventilation: case summary and theoretical analysis. Respir Care. 2012;57(8):1325-33.

Kallet RH. Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 2: airway pressure release ventilation. Respir Care. 2011;56(2):190-203; discussion 203-6.

Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43(11):1648-1659.

Talmor D, Sarge T, Malhotra A, O'Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095-104.

Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, Brochard L. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. J Appl Physiol (1985). 2008;105(6):1944-9.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2023 María Eugenia Dotta, Magdalena Botto, Juan Manuel Carballo, María Lucía Gimenez, Norberto Tiribelli