Monitoreo de la perfusión tisular en pacientes con shock septico.

Main Article Content

Daniel Alejandro Duarte
Romina Vanesa Nicastro
Gustavo Benavent
Ana Monson
Jorge Roldan
Yanina Escobar
Nestor Raimondi
Fabian Plano

Abstract

Objective. Determine the central venous oxygen saturation (SvcO2), the venoarterial difference of carbon dioxide (Delta P (av) CO2) and the arteriovenous oxygen content (Delta P (av) CO2 / C (av) O2) upon entry into the first 24 hours of septic shock, to predict mortality.


Adults who entered the multipurpose STI with a diagnosis of septic shock (SS) from the period between March 2016 and March 2017.


Results: 4 groups of patients in the first 24 hours after admission according to SvcO2 values. Group 1: SvcO2>70%, DeltaP(a-v)CO2/C(a-v)O2<1.4; Group 2: SvcO2>70%, DeltaP(av)CO2/C(av)O2>1.4; Group 3: SvcO2<70%, DeltaP(av)CO2/C(av)O2<1.4 and Group 4: SvcO2<70%, DeltaP(av)CO2/C(av)O2>1.4. 80 patients who entered the STI with SS were evaluated; 4 p who died within 24 hours of admission were excluded, the average age 53 +/- 16 years, the mean SAPS II 63. the most prevalent infectious focus was 35% pulmonary. The days of mechanical ventilation were 12 days (3-21), the mean stay in the STI was 14 (4-23), they required 16% renal replacement, the overall mortality was 36.8%. In the bivariate analysis of it was observed between the group S and NS in the variables DP (av) CO2 4 (3-5) versus 6.5 (4-9) p = 0.025 lactate> 2 (43%) versus (93%) p = 0.003, SvcO2 <70% (21.7%) versus (50%) p = 0.005 and Delta P (av) CO2 / C (av)> 1.4 (43%) versus (79%) p = 0.04 respectively. The rest of the variables did not show significant differences.


Conclusion: SS patients who have SvcO2<70% and DeltaP(a-v)CO2/C (a-v)>1.4 measured in the 24 hours of admission have higher mortality at 30 days.

Article Details

How to Cite
1.
Duarte DA, Nicastro RV, Benavent G, Monson A, Roldan J, Escobar Y, et al. Monitoreo de la perfusión tisular en pacientes con shock septico. Rev Arg de Ter Int. [Internet]. 2020 Jun. 17 [cited 2024 Nov. 22];37(2). Available from: https://revista.sati.org.ar/index.php/MI/article/view/567
Section
Originales
Author Biography

Daniel Alejandro Duarte, CLINICA DE ESPECIALIDADES MEDICAS PRIVADA (CEMEP)

JEFE DE DEPARTAMENTO DE CUIDADOS INTENSIVOS

References

Bibliografía

Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet 2005; 365:63-78.

Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014; 40:1795-1815.

Hollenberg SM. Think locally: evaluation of the microcirculation in sepsis. Intensive Care Med. 2010; 36:1807-1809.

Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138-150.

Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36: 296-327.

Morris AH. Treatment algorithms and protocolized care. Curr Opin Crit Care 2003; 9: 236-240.

Hollenberg SM, Ahrens TS, Annane D, et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 2004; 32: 1928-1948.

Vincent JL, De Backer D. Circulatory shock. N Engle J Med. 2013; 369:1726-1734.

Otero RM, Nguyen HB, Huang DT, et al. Early goal-directed therapy in severe sepsis and septic shock revisited: concepts, controversies, and contemporary findings. Chest 2006; 130: 1579-1595.

Nguyen HB, Rivers EP , Knoblich BP , Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with im- proved outcome in severe sepsis and septic shock. Crit Care Med. 2004; 32:1637-1642.

Trzeciak S, Dellinger RP, Parrillo JE, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 2007; 49: 88-98.

Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004; 32:1637-1642.

Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S,

et al. Ratios of centralvenous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016; 6(1):10.

He H, Liu D, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care. 2016;31:76-81

Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303:739-746.

Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg.1996; 171:221-226.

Mesquida J, Saludes P, Gruartmoner G, Espinal C, T orrents E, Baigorri F, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015; 19:126.

Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernández G, Bruhn A, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015; 41(5):796-805.

Kiyatkin me, bakker j. Lactate and microcirculation as suitable targets for hemodynamic optimization in resuscitation of circulatory shock. Curr Opin Crit Care. 2017 Aug;23(4):348-354.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13: 818-829.

Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction failure. Intensive Care Med 1996; 22: 707-710.

Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care. 2004; 8:462-468.

Rivers EP, Nguyen HB, Havstad S, et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377.

Kumar A, Roberts D, Wood KE, et al. Duration hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589-1596.

Sánchez DJ, Monares ZE, Rodríguez ZC, Díaz EA. Protocolos de reanimación en choque séptico. An Med Asoc Med Hosp ABC. 2015; 60(4):261-265.

Navarrete ML, Cerdeño MC, Serra MC, Conejero R. Síndrome de distrés mitocondrial y de la microcirculación en el paciente crítico. Implicaciones terapéuticas. Med Intensiva. 2013; 37(7):476- 484.

Loza VA, León GC, León RA. Nuevas alternativas terapéuticas para la sepsis grave en el paciente crítico. Revision. Med Intensive. 2011; 35:236-245.

Funk D, Sebat F, Kumar A. A system approach to the early recognition and rapid administration of best practice therapy in sepsis and septic shock. Curr Opin Crit Care 2009; 15: 301-307.

Gao F, Melody T, Daniels DF, Giles S, Fox S. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care 2005; 9: 764-770.

Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 2007; 35: 1105-1112.

Septic shock resuscitation in the first hour. Simpson, Nicholas a; Lamontagne, Francois b,c; Shankar-Hari, Manu d,e [Miscellaneous Article] Current Opinion in Critical care. 23(6):561-566, December 2017.

Kiyatkin ME1, Bakker J. Lactate and microcirculation as suitable targets for hemodynamic optimization in resuscitation of circulatory shock. Curr Opin Crit Care. 2017 Aug;23(4):348-354.

Hernandez G, Castro R, Romero C, De la Hoz C, Angulo D, Aranguiz I, Larrondo J, Bujes A, Bruhn A. Persistent sepsis-induced hypotension without hyperlactatemia: Is it really septic shock? J Crit Care 2011; 26:435.e9-14.

Hernandez G, Bruhn A, Castro R, Regueira T. The holistic view on perfusion monitoring in septic shock. Curr Opinion Crit Care 2012 Jun; 18:280-286.

Hernandez G, Bruhn A, Castro R, Pedreros C, Rovegno M, Kattan E, Veas E, Fuentealba A, Regueira T, Ruiz C, Ince C. Persistent Sepsis-Induced Hypotension without Hyperlactatemia: A Distinct Clinical and Physiological Profile within the Spectrum of Septic Shock. Crit Care Res Pract 2012; 2012:536852. Epub 2012 Apr 18.

De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010; 16:250-254.

De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36:1813-1825.